Ir al contenido principal

Un hongo que puede simular la red vial de Tokio

Si alguna vez siembran una colonia de Physarum polycephalum, un hongo filamentoso tipo ameba, podrán ver que tiene una forma muy peculiar de crecimiento.

A diferencia de los hongos más comunes como Penicillium o Aspergillum, que tienen un crecimiento del tipo radial formando capas circulares que crecen a partir del centro de la placa petri, el Physarum lo hace como un árbol, con muchas ramificaciones como si fueran las venas de un sistema circulatorio. Lo interesante de ello es que puede formar patrones similares a una red vial. Es decir, busca la forma más eficiente (rápida y directa) de llegar de un punto a otro.


Lo que se ve en la imagen es una colonia de Physarum (en color amarillo) creciendo durante un día dentro de una placa petri con un medio de cultivo sin nutrientes. En vista que el hongo evita las zonas muy iluminadas, un grupo de investigadores japoneses utilizaron un haz de luz para delimitar la zona de crecimiento del Physarum, la cual tenía la forma de la línea costera de la ciudad de Tokio. Adicionalmente, colocaron dentro de la placa petri zonas puntuales ricas en nutrientes en los lugares donde habrían suburbios y zonas residenciales.

Durante las primeras horas, el hongo crecía como una mucosa amorfa. Pero a medida que pasaba el tiempo, empezó a tomar la forma de una compleja red de conexión buscando la manera más rápida y directa de alcanzar las zonas ricas en nutrientes para poder sobrevivir.

Anteriormente, ya se había demostrado que Physarum tenía la capacidad de encontrar el camino más rápido hacia una fuente nutritiva dentro de un laberinto. Los sistemas de conexión que establece este hongo son muy eficientes y altamente balanceados en cuanto al costo de producción. Ellos evitan gastar energías creciendo por todo el medio de cultivo, por lo que buscan un sistema de conexión tubular directo hacia las fuentes nutritivas.

Estas redes de conexión tienen características asombrosas. Por ejemplo, la longitud total de la red es cercana a la mínima distancia posible requerida para unir todos los puntos distribuidos en un mismo espacio. Asimismo, la distancia promedio para unir dos diferentes puntos también es muy corta y poseen una gran capacidad para eludir obstáculos como si fueran ingenieros diseñando pistas que eviten pasar sobre fallas geológicas.


Los investigadores compararon las redes formadas por Physarum (A, B y C) con las redes viales de Tokio y sus principales ciudades y suburbios adyacentes (D), observándose una gran similaridad entre ellas. Adicionalmente, estas redes fueron comparadas con otras desarrolladas por las computadoras (E y F).

Debemos recordar que las redes de transporte son una parte muy importante en la infraestructura y desarrollo de un país, sobre todo en una sociedad industrial como la nuestra.Por ello, es importante facilitar y hacer más eficiente el transporte de personas, recursos, materias primas, energías e información. Además, esto no solo es aplicable para carreteras o vías férreas, sino también, para cables de alta tensión de luz que transportan la energía eléctrica desde las centrales hasta las ciudades. 

Referencia:

Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D., Fricker, M., Yumiki, K., Kobayashi, R., & Nakagaki, T. (2010). Rules for Biologically Inspired Adaptive Network Design Science, 327 (5964), 439-442 DOI: 10.1126/science.1177894

[Entrada publicada originalmente el 22 de enero de 2010]

Comentarios

  1. Este video lo dice todo:
    http://www.youtube.com/watch?v=zV9XA19I2uU

    ResponderBorrar
  2. Que ingeniosos! q paciencia la de los cientificos, comenzare a hacer figuritas con mis cepitas jejeje

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja.


Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

Si b…

TOP 10: Las peores cosas de trabajar en un laboratorio

Encontré este interesante artículo publicado en Science Careers. La verdad es que me ha gustado mucho —me sentí identificado con varios aspectos— tanto que me tomé la libertad de traducirlo y hacerle algunas modificaciones, en base a mi experiencia personal, para ustedes.Tus amigos no-científicos no entienden lo que haces.

Cuando te reúnes con tus amigos del colegio o del barrio y empiezan a hablar acerca de sus trabajos, qué es lo que hacen y cuáles han sido los logros más recientes, ellos fácilmente lo pueden resumir en un “he construido una casa/edificio/puente/carretera”, o “he dejado satisfecho a un cliente” (que feo sonó eso xD), o tu amigo abogado dirá “he sacado de la cárcel a un asaltante confeso y encima he logrado que lo indemnicen”, pero cuando te toca a ti ¿qué dirás? “Bueno he curado… uhm, la verdad no he curado, las ratas viven un poco más pero no las he curado, así que he descubierto… no, esa palabra es muy fuerte. La verdad he probado… este… tampoco, las pruebas están …

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…