Ir al contenido principal

Reglas generales para la elección del codón óptimo

En nuestros cursos de biología general nos han enseñado que el código genético es degenerado, es decir, un mismo aminoácido puede ser codificado por varios codones (tripletes de nucleótidos). A pesar de ello, los organismos vivos tienen una preferencia por usar uno en mayor proporción. Aún no está claro si es que esta preferencia se debe a la acción de la selección natural a nivel de la traducción o que han dirigido la preferencia a determinados codones.

Un grupo de investigadores de la Universidad de Arizona realizaron un estudio para entender mejor este fenómeno que ha intrigado a los biólogos por muchos años. Para ello, se enfocaron en el porcentaje de guaninas (G) y citosinas (C) contenido en las regiones intergenéticas, usando los genomas completos de 675 bacterias, 52 arqueas y 10 hongos.

Se identificaron aquellos genes que codificaban proteínas con más de 50 aminoácidos y se examinó la frecuencia con la que aparecían cada uno de los codones para determinar el óptimo o favorito. Luego se clasificaron los codones en familias según si eran ricos en GC o en AT. A los más ricos en GC se les dio un valor de 1; a los más ricos en AT, -1; y, a los que tienen un contenido intermedio de GC, cero. Luego se sumaron los escores y se dividieron entre el número de familias. Si un organismo tiene más codones ricos en GC tendrá un escore final mayor a 0, si tiene más codones ricos en AT tendrá un escore menor a 0. 

Estos valores luego se plotearon y se encontró una clara correlación entre los que tienen más contenido intergenético de GC tienen más codones óptimos ricos en GC. Lo mismo ocurría con los que son más ricos en AT cuyos codones óptimos también son ricos en AT. Estos resultados se repitieron en arqueas y hongos.


Un resultado raro se obtuvo con la Drosophila melanogaster, ya que esta mosca a pesar de tener un contenido intergenético rico en AT, sus codones óptimos son ricos en GC. La explicación que le dan es que a pesar de su bajo contenido en GC la D. melanogaster usa una mayor proporción de codones ricos en GC que otros organismos.


Otro resultado mostraba que aquellos organismos que tenían altos porcentajes de GC en las regiones intergenéticas, para los aminoácidos que eran codificados por cuatro codones, preferían usar codones con C en vez de G para la Treonina y Glicina, y usaban preferiblemente G en vez de C para Prolina y Valina. En cambio, cuando el organismo era rico en AT en las regiones intergenéticas, no tenía una clara preferencia por T o A. 

Esto es solo un primer avance en determinar que reglas rigen la elección del codón óptimo en los organismos vivos. Hasta ahora se ha concluido que el porcentaje de GC presenten en las regiones intergenéticas juegan un papel importante en la elección del codón óptimo.

Referencia:

Hershberg, R., & Petrov, D. (2009). General Rules for Optimal Codon Choice PLoS Genetics, 5 (7) DOI: 10.1371/journal.pgen.1000556

Comentarios

Entradas más populares de este blog

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

La manifestación poco conocida de la tenia solitaria

En las profundidades del intestino delgado puede habitar un extraño huésped. Parece un fetuchini tan largo como una anaconda, pero dividido en decenas de pequeños segmentos llamados proglótides. Vive anclado a la pared intestinal por unos espeluznantes ganchos y ventosas que tiene en la cabeza (si así se le puede llamar a eso). No tiene boca porque se alimenta a través de la piel. Es la famosa tenia solitaria . Escólex de Taenia solium con cuatro ventosas y rostelo con ganchos. Fuente: CDC. Le llaman solitaria porque no necesita de una compañera (o compañero) para poder formar una familia. Son hermafroditas. Cada proglótido maduro tiene su propio suministro de óvulos y esperma, capaces de producir unos 60 000 huevos muy resistentes que son liberados a través de nuestras heces . Al menos seis segmentos llenos de huevos son liberados cada día por una persona infectada. Cuando los cerdos comen alimentos contaminados con heces humanas, común en algunas zonas de la sierra y selva del paí