Ir al contenido principal

Reglas generales para la elección del codón óptimo

En nuestros cursos de biología general nos han enseñado que el código genético es degenerado, es decir, un mismo aminoácido puede ser codificado por varios codones (tripletes de nucleótidos). A pesar de ello, los organismos vivos tienen una preferencia por usar uno en mayor proporción. Aún no está claro si es que esta preferencia se debe a la acción de la selección natural a nivel de la traducción o que han dirigido la preferencia a determinados codones.

Un grupo de investigadores de la Universidad de Arizona realizaron un estudio para entender mejor este fenómeno que ha intrigado a los biólogos por muchos años. Para ello, se enfocaron en el porcentaje de guaninas (G) y citosinas (C) contenido en las regiones intergenéticas, usando los genomas completos de 675 bacterias, 52 arqueas y 10 hongos.

Se identificaron aquellos genes que codificaban proteínas con más de 50 aminoácidos y se examinó la frecuencia con la que aparecían cada uno de los codones para determinar el óptimo o favorito. Luego se clasificaron los codones en familias según si eran ricos en GC o en AT. A los más ricos en GC se les dio un valor de 1; a los más ricos en AT, -1; y, a los que tienen un contenido intermedio de GC, cero. Luego se sumaron los escores y se dividieron entre el número de familias. Si un organismo tiene más codones ricos en GC tendrá un escore final mayor a 0, si tiene más codones ricos en AT tendrá un escore menor a 0. 

Estos valores luego se plotearon y se encontró una clara correlación entre los que tienen más contenido intergenético de GC tienen más codones óptimos ricos en GC. Lo mismo ocurría con los que son más ricos en AT cuyos codones óptimos también son ricos en AT. Estos resultados se repitieron en arqueas y hongos.


Un resultado raro se obtuvo con la Drosophila melanogaster, ya que esta mosca a pesar de tener un contenido intergenético rico en AT, sus codones óptimos son ricos en GC. La explicación que le dan es que a pesar de su bajo contenido en GC la D. melanogaster usa una mayor proporción de codones ricos en GC que otros organismos.


Otro resultado mostraba que aquellos organismos que tenían altos porcentajes de GC en las regiones intergenéticas, para los aminoácidos que eran codificados por cuatro codones, preferían usar codones con C en vez de G para la Treonina y Glicina, y usaban preferiblemente G en vez de C para Prolina y Valina. En cambio, cuando el organismo era rico en AT en las regiones intergenéticas, no tenía una clara preferencia por T o A. 

Esto es solo un primer avance en determinar que reglas rigen la elección del codón óptimo en los organismos vivos. Hasta ahora se ha concluido que el porcentaje de GC presenten en las regiones intergenéticas juegan un papel importante en la elección del codón óptimo.

Referencia:

Hershberg, R., & Petrov, D. (2009). General Rules for Optimal Codon Choice PLoS Genetics, 5 (7) DOI: 10.1371/journal.pgen.1000556

Comentarios

Entradas más populares de este blog

Muestras de ADN ambiental redefinen el árbol de la vida de los hongos

Los hongos (Reino: Fungi ) forman parte importante de cualquier ecosistema del planeta, ya que son los principales responsables de la degradación de toda la biomasa muerta que hay en él y, además, pueden establecer relaciones simbióticas con muchas especies de plantas y animales. Sin embargo, se sabe muy poco acerca de su historia evolutiva. Científicos británicos descubrieron que existe un grupo muy diverso de hongos primitivos, muy relacionados con el género Rozella , a los cuales agruparon en un nuevo clado llamado Criptomycota ( Cryptomycota ), según reportaron hoy en Nature . Los hongos se presentan de dos formas típicas: levadura y filamentos , caracterizándose por tener una pared celular rígida hecha a base de quitina , la cual les permitió adaptarse a los diferentes hábitats que hay en el planeta. Sin embargo, nuestro entendimiento sobre la historia evolutiva de los hongos sólo se limita a aquellos que hemos podido aislar y cultivar en el laboratorio. Existe una gran can

¿Cuál de los cromosomas X se inactiva en las hembras?

Si preguntamos en la calle ¿cuál es la principal diferencia entre un varón y una mujer?, seguramente las respuestas más frecuentes serán los senos, los órganos reproductores, la barba, la obsesión por los zapatos o por los videojuegos, entre otros.  Pero muy pocos —tal vez algunos biólogos que cayeron en la encuesta— dirán “¡los cromosomas sexuales!”. Y tendrían razón.  La diferencia más sustancial, a partir de la cual se originan todas las demás, son los cromosomas sexuales. En los mamíferos, las hembras tienen dos cromosomas X (XX) y los machos un cromosoma X y un cromosoma Y (XY). A pesar de ser chiquito, el cromosoma Y porta un gen esencial para lograr la diferenciación masculina. De no ser por él, prácticamente todos seríamos hembras, así tuviéramos solo un cromosoma X (X0) como en el Síndrome de Turner . Entonces, serán los machos quienes finalmente determinen el sexo de los hijos porque sus espermatozoides portarán o bien el cromosoma X o bien el cromosoma Y; mient

Ozono por el culo

La insuflación rectal de ozono , que en términos coloquiales es ozono por el culo  ( OxC , de forma abreviada), es una forma de ozonoterapia.  Según sus promotores , esta terapia "es muy potente en cuanto a la eliminación de gérmenes intestinales como virus, bacterias, protozoos, hongos, etc ". Incluso pidieron a la Organización Mundial de la Salud que lo usaran para el tratamiento del Ébola.  Según Ozonomédica , la ozonoterapia, en general, "es una eficaz alternativa en el tratamiento y control de muchas patologías y enfermedades crónicas" que incluso "puede retrasar o evitar la aparición de diabetes, cáncer, artritis, artrosis, entre otras". Paciente recibiendo OxC. Fuente: Ozonoterapia . Sin embargo,  de acuerdo con la Administración de Alimentos y Medicamentos de los Estados Unidos ( FDA ), el ozono es un gas tóxico sin alguna aplicación médica conocida . Si bien es cierto, el ozono nos protege de la peligrosa radiación ultravi