Ir al contenido principal

¿Por qué la peste fue tan letal?

La peste bubónica ha matado a más de 200 millones de personas durante el curso de la historia, siendo la infección más devastadora de todos los tiempos. Sin embargo, se sabe muy poco acerca de las bases moleculares de su virulencia.

Recientemente, investigadores de la Universidad de Chicago han descubierto que una sola mutación genética es la causante de que la bacteria de la peste (Yersinia pestis) sea mucho más virulenta y letal que cualquiera de sus especies parentales.

Esto se debe a que la bacteria de la peste, necesita de iones de calcio (Ca2+) para poder crecer a nuestra temperatura corporal, pero, cuando el Ca2+ no está disponible, empieza a producir una gran cantidad de aspartato. Y ¿qué provoca que el aspartato se empiece a acumular?

Y. pestis evolucionó a partir de su antecesor Y. pseudotuberculosis en los últimos 20.000 años, sugiriendo que su alta letalidad se refleja en algunos cambios genéticos.

Se descubrió que una mutación provocó que la bacteria no pueda producir una enzima llamada aspartasa. Esta enzima está presente en casi todas las bacterias, pero curiosamente se encuentra ausente en muchos microorganismos patógenos como las Mycobacterias patógenas del hombre, entre ellas la Francisella tularensis (causante de la tularemia) y las bacterias del género Rickettsia.

La aspartasa digiere el ácido aspártico, pero como esta enzima no está presente en Y. pestis, se produce mucho más aspartato de lo que es requerido por la persona infectada, causando un desiquilibrio en la proporción de aminoácidos. Este descubrimiento da otra perspectiva hacia nuevos tratamientos enfocados en remover las cantidades extra de ácido aspártico del cuerpo.

Comentarios

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.