Ir al contenido principal

Los microARNs

El dogma central de la Biología Molecular nos dice que, "toda la información genética está almacenada como ADN, que es transcrito a moléculas de ARN para finalmente ser traducido a proteinas", pero existen ciertos herejes, como los microARNs (miARN), que no se rigen bajo este dogma, ellos son pequeñas moléculas de ARN de 21 a 25 nucleótidos, que aparte de no codificar para proteína alguna, se unen al ARNm bloqueándolos y evitando que se traduzcan a proteínas. En otras palabras participan la regulación de la expresión genética a nivel postranscripcional.

Pero, en que momento se une el miARN al ARNm?, hasta hace poco lo científicos creían que esta unión se daba después de haberse unido el ribosoma al ARNm, osea, una vez empezada la traducción, el miARN se unía al ARNm que estaba siendo traducido y bloqueaba el avance del ribosoma, tal como lo pueden apreciar en el video. Pero, "como siempre", los científicos estaban equivocados. El Laboratorio Hentze (asociada a la EMBL), desarrolló una prueba, recreando las condiciones reales de los embriones de la mosca de la fruta. Al añadir ARNm al tubo de prueba observó que, los miR2-un importante miARN presente en la mosca de la fruta- se unía al ARNm antes del inicio de la traducción, incluso antes del ensamblaje de las subunidades de los ribosomas, y que el complejo ARNm-miARN se veía muy similar al complejo ARNm-Ribosoma, es por esta razón que los científicos, al ver este complejo, pensaban que la traducción ya se había iniciado y que los miARN deberían interferir en una etapa posterior del proceso.

Como pudimos apreciar, los miARNs pueden regular la expresión genética, pero que tal si por ahí unos miARNs defectuosos bloquean los ARNm que codifican para proteínas importantes para nuestra supervivencia, o que no bloqueen las proteínas que deberían ser bloqueadas? La canción¡¡, es por esta razón que los miARNs están relacionados con algunas enfermedades, cánceres y desarrollo de tumores. En la figura (Nature Medicine 11, 712-714, 2005) se ve que la sobreexpresión de los miARNs puede amplificar su efecto, bloqueando la traducción de genes supresores de tumores, o una subexpresión de los miARNs por metilaciones en el ADN que lo codifica, podría resultar en un incremento de la expresión de un oncogen, debido a que no puede bloquear su traducción.

Los miARNs también pueden ser buenos y malos, entre los buenos se ha observado que ciertos miARNs pueden suprimir la sobrexpresión de un gen llamado HMGA2 que está relacionado con la creación de ciertos tumores como la fibroides uterina, la formación del tejido graso, así como la obesidad inducida por la dieta.

También se creían que los miARNs sólo se encontraban en animales y plantas, pero hace un año, se encontró por primera vez en un organismo unicelular: Chlamydomonas reinhardtii, que es una alga verde. Debido a la pequeña longitud de estos fragmentos de ARN, no se han podido encontrar secuencias conservadas en plantas, animales y algas, a pesar que estos miARNs encontrados en esta alga verde han mostraron ser funcionales en ciertas plantas. Los procariotas no tienen miARNs propiamente dichos, ellos poseen los pequeños ARNs (sARNs), que también actúan en la regulación de la expresión genética, pero al no formar un pre-miARN y la enzima Dicer no está presente, no son considerados miARNs, un ejemplo más de discriminación en el micromundo celular.

Y por si fuera poco, también los miARNs juegan un papel importante en la regeneración de tejidos y órganos en ciertos animales como las salamandras y los peces zebra. Un estudio en la universidad de Duke demostró que los peces zebra podían regenerar sus aletas cuando las pierden o se dañan (ScienceDaily Marzo18, 2008). Esto lo logran bajando los niveles del miARN miR-133. Algunos creen que los mamíferos podrían tener esta misma capacidad de regeneración de tejidos, pero que han sido silenciados en el transcurso de la evolución.
Bueno, los miARNs están de moda, cada día se descubren nuevas cosas con respecto a ellos, se ha demostrado que forman parte importante en la diferenciación de las celulas madre, por ejemplo mR-1 y mR-133 están envueltos en la diferenciación de las células madre a células del corazón, así como en algunas enfermedades del corazón como se ve en la figura (Nature 407, 389-390, May 24, 2007).

Hay mucha información en internet así que no sean flojos y busquen no más, que ya me cansé.

Comentarios

  1. Interesante blog amigos de BioUnalm. Trantan de ser didacticos en la mayoría de los casos para que sea de fácil digerir a usuarios que (como yo) buscan entender algunas cosas sin entrar a mucho tecnisismo propias de la profesión. Saludos y felicitaciones

    Agustín Segura
    Periodista y diseñador web
    http://www.viajandoporperu.com

    ResponderBorrar

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.

Entradas más populares de este blog

Fusión y fisión de mitocondrias

Se cree que los procariotas aparecieron en el planeta hace unos 3,500 millones de años, mientras que los eucariotas lo hicieron hace unos 2,000 millones de años. Pero, si los procariotas llevan una ventaja de 1,500 millones de años a los eucariotas, ¿por qué ellos no son los organismos más complejos? La respuesta son las mitocondrias [Les recomiendo leer este artículo publicado en el blog]. Todos conocemos a las mitocondrias, si no las recuerdan, aquí se las presento. Tal vez la imagen que tenemos de ellas es que se encuentran diseminadas por toda la célula, aisladas unas de otras o, a lo mucho, reuniéndose en pequeños grupos. Sin embargo, esto no es así. En realidad, las mitocondrias son unos organelos muy dinámicos, que se encuentran fusionándose y dividiéndose constantemente, pero hasta ahora no se sabe a ciencia cierta que rol cumple este proceso. Axel Kowald de la Universidad Humboldt de Berlín y Tom B. L. Kirkwood de la Universidad de Newcastle han desarrollado una teoría

El mapa de las rutas metabólicas… Animado!

¿Qué es una ruta o vía metabólica? De manera sencilla, es el flujo de reacciones que sigue un determinado compuesto al ingresar a la célula, de esta manera, se transforma en una molécula más compleja (biosíntesis o anabolismo) o en una más sencilla (degradación o catabolismo). Por ejemplo: el pan tiene una gran variedad de compuestos químicos, pero el más abundante es el almidón —presente en la harina con el que es elaborado. El almidón es degradado por una serie de reacciones químicas gracias a unas enzimas llamadas amilasas, convirtiéndose en pequeñas unidades de glucosa. La glucosa ingresa a la célula y pasa por una serie de reacciones para llegar a formar dos moléculas de piruvato. Gráficamente lo podemos ver de la siguiente manera: Esta forma de graficarla se ve muy fría y poco llamativa, es más, parece ser muy difícil de aprenderla y no nos dice nada de como es el flujo de las otras moléculas que participan en la reacción, por ejemplo: el ADP y el NADH. Además, ésta sol

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja. Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.