Ir al contenido principal

La estructura de resistencia

No debe de extrañarnos que las infecciones sean cada vez más difíciles de combatir. Esto se debe, en gran parte, a que cuando nos enfermamos, nunca cumplimos con la dosis recetada por el médico.

Si el médico te dice que debes tomar amoxicilina, dos veces al día, durante siete días; pero al cuarto día ya te sientes mejor, aún así debes seguir tomando estos medicamentos. No creas que te recetaron tantas pastillas porque el médico tiene un trato con las empresas farmacéuticas o con el boticario de la esquina (aunque pueden darse casos). La razón es que al cuarto día te sientes mejor porque la carga microbiana a descendido bastante, pero no ha sido eliminada por completo, esas pocas centenas de bacterias que quedaron vivas, lo hicieron por tener algún tipo de resistencia, y dado que su mecanismo de reproducción es muy sencillo, a las pocas horas se empezarán a dividir creando muchas más bacterias resistentes a los medicamentos, y esta vez la infección será mucho peor.

¿A que se debe esta resistencia?

Un equipo de científicos de la Universidad René Descartes de París, han resuelto la estructura de dos proteínas que permiten a las bacterias obtener resistencia a varios tipos de antibióticos, según un informe publicado en EMBO Reports este mes. Este trabajo ofrece nuevas pistas sobre cómo las bacterias adquieren dichas resistencias y la forma de como diseñar nuevos fármacos que contrarresten este mecanismo de defensa.

Se cristalizaron ambas estructuras de resistencia a antibióticos, las de corto y amplio espectro de la enzima acetiltransferasa modificadora de antibiótico revelando que la enzima tiene un sitio activo flexible que puede evolucionar para dar cabida a nuevos antibióticos, lo que permite a las bacterias romper estas moléculas volviéndolas inocuas. Esto explica por qué este tipo de enzima es ahora llevado por muchas bacterias que luchan por su supervivencia en la "Era de los Antibióticos".

Más importante aún, esta investigación proporciona nuevos conocimientos para el diseño de nuevos antibióticos que podrían evadir esta forma de resistencia, y los nuevos inhibidores que permitiría que se mantenga la eficacia de los antibióticos actuales, así como ayudar en la lucha contra las infecciones mortales tan frecuentes en los hospitales.

Fuente | European Molecular Biology Organization.

Comentarios

Entradas más populares de este blog

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…

¿Por qué tanto miedo al bromuro de etidio?

El bromuro de etidio (BrEt) es un agente químico muy usado en técnicas de biología molecular para teñir nuestros geles de agarosa y poder apreciar nuestras bandas de ADN; ya sean de los productos de extracción o de PCR. Existen dos formas de teñir los geles: i) remojando el gel de agarosa por 15 minutos en una bandeja con BrEt (0,5 mg/L) después de haber hecho la electroforesis o ii) añadiendo el BrEt directamente al gel al momento de prepararlo. Con la primera evitamos contaminar nuestra cámara de electroforesis con BrEt y con la segunda evitamos exponernos a salpicaduras y otros accidentes que pueden ocurrir al hacer la tinción en bandeja.


Se han dado cuenta que desde que entramos a un laboratorio de biología molecular nos tienen traumados con el BrEt: "¡Cuidado que te salpique!", "¡no lo huelas!", "¡usa tres guantes!", "¡no es por ese lado!", "¡si te cae en la piel te va a dar cáncer y te puedes morir!", entre otras cosas más.

Si b…

TOP 10: Las peores cosas de trabajar en un laboratorio

Encontré este interesante artículo publicado en Science Careers. La verdad es que me ha gustado mucho —me sentí identificado con varios aspectos— tanto que me tomé la libertad de traducirlo y hacerle algunas modificaciones, en base a mi experiencia personal, para ustedes.Tus amigos no-científicos no entienden lo que haces.

Cuando te reúnes con tus amigos del colegio o del barrio y empiezan a hablar acerca de sus trabajos, qué es lo que hacen y cuáles han sido los logros más recientes, ellos fácilmente lo pueden resumir en un “he construido una casa/edificio/puente/carretera”, o “he dejado satisfecho a un cliente” (que feo sonó eso xD), o tu amigo abogado dirá “he sacado de la cárcel a un asaltante confeso y encima he logrado que lo indemnicen”, pero cuando te toca a ti ¿qué dirás? “Bueno he curado… uhm, la verdad no he curado, las ratas viven un poco más pero no las he curado, así que he descubierto… no, esa palabra es muy fuerte. La verdad he probado… este… tampoco, las pruebas están …