Ir al contenido principal

Genes 'telepáticos' reconocen similitudes entre sí

Los genes tienen la capacidad de reconocer similitudes entre sí a distancia sin ningún tipo de proteínas u otras moléculas biológicas que ayuden en este proceso, de acuerdo con una investigación publicada esta semana en la Journal of Physical Chemistry B. Este descubrimiento podría explicar cómo los genes pueden encontrar a otro similar y agruparse juntos con el fin de realizar procesos clave que promueven la evolución de las especies.


Este nuevo estudio demuestra que los genes —cadenas de ADN con una estructura de doble hélice y con un patrón de nucleotidos determinado— puede reconocer otros genes con un patrón similar de bases químicas. Esta capacidad de buscar el uno al otro podría ser la clave para determinar cómo los genes se identifican entre sí y se adhieren unos con otros con el fin de comenzar el proceso de "recombinación homóloga", donde dos cadenas dobles de ADN se unen para formar una sección de intercambio de información genética, y luego liberarse nuevamente.

La recombinación es un proceso importante que desempeña un papel clave en la evolución y la selección natural, y es también parte fundamental de la capacidad del cuerpo para reparar el ADN dañado. Hasta ahora, los científicos no han descubierto exactamente cómo se da este proceso y dónde se encuentran las secciones homólogas para proceder con la recombinación.

Los autores del presente estudio han llevado a cabo una serie de experimentos para poner a prueba esta teoría, desarrollada por primera vez en el año 2001. En ese entonces, observaron que piezas largas de ADN idénticos podrían identificarse mutuamente simplemente como resultado de patrones complementarios en las cargas eléctricas que llevan ambas cadenas. Los investigadores además querían verificar que este efecto se dé sin necesidad de un contacto físico entre las dos moléculas, o que sea facilitada por la presencia de proteínas.

Estudios previos han sugerido que las proteínas están involucradas en el proceso de reconocimiento cuando se produce entre líneas cortas de ADN, que sólo tienen alrededor de 10 pares de bases. Esta nueva investigación demuestra que cadenas de ADN mucho más largas, con cientos de pares de bases, pueden estar en condiciones de reconocer a los demás como un todo, sin la participación de proteínas. Según esta teoría, este mecanismo de reconocimiento es más fuerte, cuanto más largos son los genes.

Los investigadores observaron este comportamiento con la ayuda de moléculas de ADN marcado con fluorescencia en una solución pura. Encontraron que las moléculas de ADN con patrones idénticos de nucleotidos fueron aproximadamente dos veces más capaces de juntarse que aquellos con patrones diferentes.

El Prof. Alexei Kornyshev del Imperial College London, uno de los autores del estudio, explica el significado de los resultados encontrados por el equipo: "Al ver estas moléculas de ADN idénticas que se buscan unos a otros en medio de la multitud, sin ningún tipo de ayuda externa, de hecho, es muy emocionante. Esto podría proporcionar una fuerza motriz de genes similares para iniciar el complejo proceso de recombinación sin la ayuda de otras proteínas o factores biológicos. Los resultados experimentales hallados por nuestro equipo, parecen apoyar estas expectativas".

Comprender el mecanismo preciso de la primera etapa del proceso de reconocimiento en la recombinación genética puede arrojar a la luz sobre la manera de como evitar o reducir al mínimo los errores de la recombinación en la evolución, la selección natural y la reparación del ADN. Esto es importante, ya que se cree que tales errores son causa de una serie de enfermedades determinadas genéticamente, entre ellas el cáncer y algunas formas de la enfermedad de Alzheimer, así como contribuir con el envejecimiento. La comprensión de este mecanismo es también esencial para la refinación de las técnicas usadas en la recombinación artificial como parte de las investigaciones en la terapia génica y la biotecnología.

El equipo está trabajando ahora en una serie de nuevos experimentos para determinar exactamente cómo se da este trabajo de interacción incluyendo la duración de dependencia prevista. Además, se necesitan estudios adicionales para determinar si esta interacción, descubierto en un tubo de ensayo, se produce de la misma manera en el complejo escenario del interior de una célula.

Fuente | Imperial College London.

Comentarios

Entradas más populares de este blog

Cuatro generaciones de ratas son alimentadas con maíz transgénico y no les pasa nada

En toda conversación o debate sobre transgénicos, no falta alguien que dice que son perjudiciales para la salud. En muchos casos, la preocupación es sincera y con una explicación clara sobre el proceso regulatorio al que son sometidos estos productos para demostrar su inocuidad y seguridad, quedan tranquilos. Pero hay personas que, a pesar de la contundente evidencia sobre la seguridad de los transgénicos para el consumo humano, insisten en que esos estudios no sirven porque no se hacen evaluaciones a largo plazo.
Bueno, un reciente estudio publicado en Journal of Agricultural and Food Chemistry evalúa el efecto del consumo de un maíz transgénico (DBN9936), que posee el gen cry1Ab (resistencia a insectos) y epsps (tolerancia a glifosato), a lo largo de cuatro generaciones (F0, F1, F2 y F3). La finalidad fue ver si el consumo de maíz transgénico provoca algún efecto en la capacidad reproductiva de las ratas o en sus descendientes.
El experimento inició con 180 ratas divididos en tres gru…

15 años más de moratoria a los transgénicos

Ese es el nuevo proyecto de ley (PL 05622/2020-CR) presentado el pasado 25 de junio por el congresista Rolando Campos Villalobos de Acción Popular, el cual tiene por único objetivo ampliar por quince años la moratoria a los transgénicos establecida por la Ley N.º 29811, que vence en diciembre del próximo año. 

Para aclarar, la moratoria sólo se aplica a la liberación al ambiente, es decir, los cultivos transgénicos. Los importados para la alimentación humana o de animales (por ejemplo, el maíz amarillo duro y la soya), no están restringidos ni regulados hasta que se apruebe el RISBA. Tampoco se prohíbe la investigación con transgénicos, pero solo si se realiza en espacios confinados como laboratorios o invernaderos. ¿Cuál es el sustento para ampliar la moratoria?Para saberlo, analicemos la exposición de motivos. Ley de moratoria se sustenta en la necesidad de preservar el ambiente equilibrado del país, dado que existe una incertidumbre sobre los impactos que pueden producir los transgéni…

¿Qué fue del estudio más grande sobre la seguridad de los transgénicos?

La tarde del 11 de noviembre de 2014, en un hotel londinense, se anuncia el lanzamiento de "Factor GMO", el experimento a largo plazo más extenso y detallado jamás realizado sobre un alimento transgénico y su plaguicida asociado.


Con un costo estimado de 25 millones de dólares, el estudio buscaba aportar —con una solidez sin precedentes— valiosa información para permitir a las autoridades reguladoras, los gobiernos y la población general, responder si es seguro el consumo de Organismos Genéticamente Modificados (OGM) o la exposición a su herbicida asociado en condiciones reales.

El experimento —que se llevaría a cabo en un laboratorio secreto en el territorio ruso para evitar cualquier injerencia externa— consistía en someter a 6.000 ratas de laboratorio a diversas dietas basadas en el maíz transgénico NK603 y su herbicida asociado (RoundUp), cuyo principio activo es el glifosato. Es similar al famoso estudio realizado Guilles-Eric Seralini, pero a mayor escala. Solo para re…